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THE MIXED MODE CRACK PROBLEM IN A
NONHOMOGENEOUS ELASTIC MEDIUM!

by
Noboru Konda? and F. Erdogan
Lehigh University. Bethlehem, PA 18015

ABSTRACT

In this paper @ onhomogenecus elastic medium containing a crack arbitrarily oriented
with respect to the direction of property gradient is considered. The problem is solved under
plane strain or generalized plane stress conditions. This is a highly simplified version of a class
of physical problems that mayv arise in fracture mechanics studies of ceramic coatings,
metal/ceramic composites and interfacial zones with continuously varying volume fractions or
graded properties. The main results of the paper are the calculated modes 1 and II stress
intensity fctors. Among the questions studied are the effects of the material nonhomogeneity
constant. the crack orientation. the loading conditions, and the Poisson’s ratio on the stress
intensity factors. Briefly discussed are also the stress state near the crack tip and the crack

opening displacement.

INTRODUCTION

Heterogeneous materials or various forms of composites have always been widely used in
technological applications. These materials are generally designed in such a way that certain
physical bulk properties of the medium are optimized. From a viewpoint of mechanical
functioning. in practice most failure processes such as, for example, corrosion, wear, and
fatigue appear to be surface related. Thus. to a certain extent many of these failures can be
controlled by controlling the material properties near and at the surfaces. In some cases a
relatively simple surface treatment would be sufficient as, for example, in surface hardening to

prevent wear or in introducing residual compressive stresses to the surface to prevent fatigue

1This study was supported by NSF under the grant MSM-8613611, by the Office of
Naval Research under the contract N00014-89-J-3188, and by Sumitomo Metal Industries,
Ltd.

2Permanent 24dress: Snmitomo Metal Industries, Ltd., Amagasaki, Japan.
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crack initiation. In many other cases. however, a protective coating with a more resistant
material may be needed. As some examples for such applications one may mention the
therinal barrier ceramic coating of combustion chambers. engine blades and other components.
coating of machine tools against wear. coatings used for protection against corrosion. and ion
plating of parts by very low yield materials (such as gold or silver) to reduce friction.

In designing various coatings. in addition to their expected physical performance, their
mechanical reliability as influenced by such failure related factors as cracking and debonding
must also be taken into consideration. To a large extent the resistance of the material to such
failures can be influenced through processing techniques (for example, by controlling the
substrate temperature to influence the residual stresses. and by controlling the degree of
mixing in plasma spray coating or in ion plating to influence the ductility of interfacial zones)
i~ee Batakis anc¢ Vogan. 19%3. and Houck. 1987). It is at this point that influencing material
properties through tailoring the composition as well as controlling the processing techniques
may be a practical option. It has been shown that certain strength related properties of
ceramic coatings can be improved by layering the interfacial zone going from metal rich to
ceramic rich compositions. For example. in joining tungsten to zirconia by introducing four
intermediate lavers that contain 80/20. 60/40. 40/60 and 20/80 percent W/ZrQ,, respectively,
it wa~ shown that the peak value of the residual stress becomes approximately one-sixth of
that obtained from direct W-ZrO, bonding (Hirano, et al.. 1988).

The next logical step is. of course. the processing of fully tailored materials and
interfacial zones with predetermined continuously varying volume fractions. Advances in
powder technology and surface chemistry in recent years have indeed made it possible to
develop such nonhomogeneous materials (or functionally gradient materials) having metal and
ceramic constituents (Hirano, et al., 1988; Hirano and Yamada, 1988). A different type of
problem in which one would have to consider the material as being nonhomogeneous would be
certain thermal stress problems. If the thermo-elastic constants are significantly dependent on
the temperature and if the temperature variation in the medium is sufficiently high, then for
realistic modelling and analysis the material has to be considered as being nonhomogeneous.

Fracture toughness and fatigue crack growth characterizations of the nonhomogeneous
materials require the solution of certain standard crack problems. The mode I plane strain
problem for an infinite nonhomogeneous medium (that is, the case of =0 in Fig. 1) was
considered by Delale and Erdogan (1983). who showed that the relative dependence of the
stress intensity factors on the nonhomogeneity constant may be quite significant. Other crack
problems involving various forms of materiai nonhomogeneity werc considered by Kassir
(1972, Dhaliwal and Singh (1978). Gerasaulis and Srivastav (1980), Erdogan (1985). and

Delale and Erdogan (1988a. 1988b). In this paper, we consider the generral mixed mode plane
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strain problem for an arbitrarily oriented crack in a nonhomogeneous medium. In previous
studies it was shown that the effect of Poisson’s ratio. v, on the stres intensity factors is not

very significant. Thus. in this study. too. v is assumed to be constant.

FORMULATION OF THE CRACK PROBLEM
Consider the plane elasticity problem shown in Fig. 1 where the medium contains a

finite crack on yv=0 plane and has a shear modulus yu defined by

(N : ;
Hixy) = pee L Xy = p°e3x+‘"} . (1)
4 = & . - = étanf’ (:))
{1-tan26 {l-f-tan29 ‘
Ho and ¢ being material constants. By observing that x=3-v for plane strain and x = (3-
vY/{1+v) for plane stress. and hence
Axy) = S8 7T (3)
K-1
I'he Navier's equations for the elastic medium may be expressed as
52 2 2.. .«
i1y Q50 ey O5u Ly 85 . 1y0u PRy LY 133y
K~1) o2 TR 1) o2 = 2 oxoy + J(A-rl)ax + ¥(w 1)ay + 7(x 1)3x
- 33-0) =
I3 x)a}_ 0.
e 2% 4 w1y 2y 4 2 B x)Qu _1)u v
{K-1) P + {(K+1) 872 + 2 BxBy + 1(3 K)ax + B(x l)ay + B(« l)ax
+ (K 3\' =
(kDG =0 (4a.b)

where u and v are respectively the x and y ccomponents of the displacement vector. After
separating the solution of the uncracked medium subjected to the prescribed external loads.
the perturbation problem would have to be solved under the following boundary conditions

and self-equilibrating crack surface tractions p; and Py:
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Oyy(X40) = oyy(x.-0) . oxy(x.4+0) = oxy(x,-0)

oyy(x.40) = py(xj, |xI<a .

\'(x.+0)-\'(x.-0) =0. |x!>a;

u(x.+0)-u(x.-0) = 0. |x|>a: oxy(x.+0) = pa(x) , |xi<a.

By expressing the solution of (4) as

x .
J l.'(,\'.a)e'm"do
x

we find
4 ny » 4 ny
I, mFlee” L Viva) = B Fita)e ™,

Uy =,

where F,,....F4 are unknown functions, n;,....n4 are the roots of

4 R, PN R
n* + 2-u3 + {-2a(a=+id)

35

x+1)=0 '

+ a?(a?+2ia3- 32442

m, are given by
(i2a-3(3-x)]n;+i(x-1)ay .

T (xn 2+ (s-D)3n-(x+1)a(a+id)

, J=1,.

m;

It can be shown that the characteristic equation (10) may be expressed as follows

[n2+-7n-a(c:+i;3)]2 + '3(;'-1‘ (a7-i3n)2 =0 .

42 4+ 32 :;ﬁ]n + ar(-20-i3

Sl

From (12) it then follows that

8,2 +4(a’+iad,)

b

2

(3a.b)

(6a.b)

(7a.b)

(8a.b)

{9a.b)

(10)

(11)

(12)

3 =
N 8, JAI +4(a“+1ad,)
1 2 2

,n3="%l+‘




Ay yL32+4(a%+iady) A b3 +4a%+iady)
ny=- 522 L ong=-F T 4 (13a-d}
N N W
_1_\'N--1j ""\3_'\1»\'13'?
RS T B Y. A= 3o 3K a-d;
.42 - o \'h""l N . g = j 1 K'l N . (14d'd
Since u and v must vanish for x2+y2 —x. from (9) and (13) it follows that
F3«q): [74-’11':0 . }>0 . (l5a.b;
Fl(u =F2iu'=0 .y <0 (16a.b)
By using the Hooke's Law. from (8). (9). (15; and (16) we obtain
X oLEL
Cxx(X.}' = 5= ’S( [-mmj(‘.’u-i-/\)4-njA}Fjexp(njy)exp(-iax)da . (17)
I N
| FxX(+1
FyylXy) = .)-_J S lianA+n (2u+))]F exp(n;y)exp(-iax)da , (18)
- -x J=
. X (+1
TxylX.V) = 5= J _E[ [njmJ-ia]Fjexp(njy)exp(—iax)do . (19)
=T lx =

where (=1 for v>0 and €=3 for y<0. If we now substitute from (18) and (19) into the

homogeneous conditions (5). we find

F; = R;F; + R,F, , F4 = RyF; + R,F, (20a.b)
where the known functions Ry(a).....R4(a) are given by

R (a) = {(\ma-ml)[(1-rx')n1n4+(3-x)02]+io(n4-n1)[1+x-(3-x)m1m4]}/Ro s

Ryla) = {(m4-m2){(1+x)n2n4+(3-x)02]+ia(n4-n2)[1+x-(3-x)m2m4]}/Ro .
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Ri(a) = - {{(m3-m )T 1+N)n1n3--;3-~)02}-4-io(n3-n1){]-+-x-(3-~)mlm3]}/R0 .
Rgiaj = - {tms-mqy)i l—-'\')n2n3+(3-~luzl-ia(n:,'-nz)[l--x-l_3-r<)m2m3}}/Ro .
Rola) = (mg-mg:0 1-—A')n3n4-¢-(3-&)021+iatjn4-n3){1-*-rc-(}3-rc’)m3m4} . i2la-¢

The two remaining unknown functions F, and F, are determined from the mixed boundarv

cconditions (6) and (7.

THE INTEGRAL EQUATIONS

To reduce the probien. to a system of integral equations we introduce the following new

unknowrn functions:

g1/ X) === uix.=0ux.-0, . x<a
ox * -

2,(Xi = Jl\ ixe=0ovix-0) L ixica (22a.b)
[,

By substituting for u and v from the results found in the previous section and inverting the
Fourier integrals. from: +22. it may be shown that

x .
I‘ ) gl(t 'Clutdf = ~i’l' l—f\"):‘ fll'lOf“l)Fl -+ (f12’|0f42)F2]/(4R0) N

-

J g2(t !eiOtd[ = -iu{:-\ 1“‘&)“21"‘10(3"{){31]}-1 + [’(1+K)f22
-

~ia'3-mif3. o (4R (23a.b)

where

f, = n3m4mj(n4-njv-—n4m3mj(nj-n3)+njm3m4(n3—n4) .

{5, = mgm.ing-n

j '~m3m(n;-ng)+mymy(nz-ng) ,

J

f;; = mamgzing-n)=ngmy a;-nz)+nm(n3-ng) .

fs, = m3ing-n,)=mgin-n3)=mnz-ng) . j=12. (24a-d)




Equations (231 and (24) give the unknown functions F; and F, in terms of g, and g,. On the

other hand. by substituting from (18) and (19) into (6b) and (7b) we find

. . - ly. ) = : Ix
}..1_1.11+0 77 | . _]; . lanJ’\-f'llJ(..y-v-/\ »)F)(o)e da = py(x).!x;<a.
" U S n,y-lay , .
vl‘-:n-}-O 5z J . j; m‘nJmJ-m\FJ(q)e da = palx) Ixi<a . {23a.b:

Now. solving 23) for F; and F,. substituting into (23). and from (22). (6a) and (Ta,

observing that g (t1=0 for t">a. we obtain the following integral equations:

lin [d ¢ b ix.v.tg (tde zix=1] e-jx x) . |x]<a . k=1.2 26
i — SN AR A S} = v N . =1.c. &
R B B P o P ( I (26)
where
N la(t-x}
Ry, (xvte = J Ky tyage de . k=127 j=1,2 | 20
-

and the known functious l\'kJ are given in the Appendix. Since the conditions gj(t)=0 rather
than (Ga; and (6b) are used for ;t!>a in deriving (26), the integral equations must be solved

under the following single-valuedness conditions:

a
J gitidt =0 . j=12 . (28)
-a

In order to determine the possible singular behavior of (26). the behavior of the kernels
th. {kj=1.2) at x=t and y=0 needs to be examined. For this, it is sufficient to determine and
separate those leading terms in the asymptotic expansion of Kk.i as |a|—o0 that would lead to
unbounded integrals. From the expressions of KKi given in the Appendix it can be shown that
in the asymptotic expansions for a —>c the only terms that would give unbounded integrals
are

x . lal -laly

l\':}(y.a\ = Kgl(y.a\ =-2L. = . (29)

Substituted into (27). these terms give Cauchy type kernels. The next lower order terms are

of the form 1/lai and give at most logarithmic kernels, log|t-x| which are square integrable and

may be treated as Fredholm kernels. By adding and subtracting the asymptotic values given




by (29) to and from KkJ in (27). and by evaluating the integrals involving the leading terms.

(26) may be modified as follows:

a
go(t) , . T(l+x) ,
a[—EZT + Kypix.t)g (t)+kyo(x.t)g,(t)ldt = 251(—)(0) pp(x) . x{<a.
2 g (0 . . m(l+x)
[ ealing kyp(x.)ggiti=kyo(x.t)gs(t)dt = 2#(&0’} pa(x) . Ix[<a. (30a.b}
where

k“(x.lt = hu()\.o.ﬂ . kz:(‘.t) = h22(x.0-t) .

.

Kpptx.tr = J 21{12(0“)'}\'1:);(0-0‘:em(t-x)do .
-
l .

kzl(x.t) = }’ {I{zl(o_u)_l\'zlx(o.a ’}elo(t-x)da - (Sla-d)
-

SOLUTION AND THE STRESS INTENSITY FACTORS
To solve the system of integral equations (30) we first define the following normalized
quantities:

s=t/a. r=x/a. gi(t)=f(s). k (x,t)=L;(r.s). pj(x)=p(ar), (ij=1.2). (32)

Then. for example. (30a) may be expressed as

L fis)
,—l.J 23+ 1+«
-1

2u(ar.0)

py(ar). [rl<1. (33a)

[y
([N E )

| Llj(r.s)fj(s)]ds =

-1/2

Noting that the fundamental solution of (33a) is (1-s2) , the unknown functions f; and f,

may now be expressed as

£)(s) = °§°0 5‘:';.12%‘_) L fy(s) = °§°0 %‘ﬂ‘.(;-) , (34a,b)
n= vli-s n= 1-s

where T, is the Chebyshev polynomial of the first kind. From (28), (34) and the

orthogonality conditions of Tp(s) it may be seen that

Ao =0 . Bo =0 . (35)




Thus. by substituting from (34 into {33/ and by using the properties

' L.n-l(r‘ . Ir'<1
‘ (s)ds
% —I—Q—S:'-L = —_— (3L,
U] iseranl-s? (r-= §r2-1)" o
- -2 S -3 ) - “ - '
= = . lel>l
T vl -1
we find
1
x . Ty o Thn(s)
r.‘El Bolpot. — ;[}::_1 ..-‘A.A_-,Ln!r.ao —~ BnLy,(r.s)] ‘?;‘? ds
t1=xipyrar
Qucar.0) F<t
. 1
he T X . Th(s)
€ Apl, i =4 € J AnLo (r.5) + Baloo(r,s)] == ds
p=p el nz1 ), )+ Bnloof )]T::
u,l-—a'~p:-ar~ ) -
__'Farﬂ_ .or<l (318..[))

where Un(r) is the Chebyshev polynomial of the second kind. Note that the integrals in (37)

are the Gaussian type and the solution may be obtained by truncating the series and using an

appropriate collocation in r.

The stress intensity factors at the crack tips a and -a are defined by

kyta) =)l(ip_1.a y2Ax-a) ayy(x.0) , ky(a) =)l(i_r_n.a,!2(x-a) oxy(x,0) ,

k,(-a) =xli£1_a4‘2(-x-a‘) oyy(x.0) . kyl-a) =xliLn_a ,1 2(-x-a) oxy(x,0) . (38a-d)
To evaluate k; and k, we observe that equations (25), or (30) provide the expressions for

oyy(x.0) and o,y(x.0) that are valid for [x|>a as well as |x|<a. Thus, by using (36), and
replacing py{(x) by o,y (x.0) (for |x{>a). from (33) it may easily be shown that
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ky(a) = yﬂ‘-a y2x-a) oyy(x.0) = yil va y2(r-1) oy (ar.0)

(e}

) (r-+ ‘Jxrz-l')n

1 | |TT| Jr2-l

— T 2u{ar.))
=lim va ‘{'Q(r-l)ﬂ-o—

! b+ Fo(n)] (
iy Tor b+ Fi(r)] . r>a (39)

where b, (r) represents all other bounded terms. Taking the limit in {39) we find

2
. _ o~ 2wal ¥
kylar = -va = .2 Bn . (40)
Simttarh
2u0a.0 X
hsida = -va 2u'a.0 LA,
- l-n 5=
t) i -
] = Jup-alli X n
ki-at = va T ngl(-l) Bn
o .
) - -y"a.O) X n
Ky -ar = va T n‘;l (-1)"Ap . {4la-c)
RESULTs

iue main results of th.. study are the stress intensity factors that are obtained from
(40 and (41, after solving equations (37), and are given in Tables 1-7. Referring to Fig. 1 we
observe that the half crack length a is the only length parameter in the problem which may be
eliminated by suitably normalizing all relevant quantities (see, for example, Eq. 32). The
exponent ¢ in uiXy)=poexp(éx;) is the measure of material nonhomogeneity and appears as
the nondimensional constant aé in the results given. The angle @ defines the orientation of the
crack with respect to the direction x; of the material property gradient. As physically
expected, for §=0 the integral equations uncouple and the crack problems corresponding to
m- ies | and Il loading conditions can be solved separately. For §#0 the integral equations are
always coupled regardless of the loading conditions. Tables show the stress intensity factors
k. and k, in normalized form. The basic definition of k; and k, are given bv (38). The

normalized stress intensity factors are defined by

kiza) = k(Fa)/(PV3) (42)
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where P represents. in each case. the amplitude of the crack surface traction. Referring to

{6b+ and (7b). the following tractions were used in the examples given by the Tables:
po(x) = 0.pyix) = (-04.-0;x/a . -ozxz/a2 . -a3x3/a3) . (43,
ppx) =0.paix; =(-7g .-7;x/a. -.-2.\<2/a2 . -r3x3/a3) . (44

For crack surface tractions that are reasonably smooth functions of x. the stress intensity
factors may be approximated by a suitable superposition of the results given by (43) and (44).
It should be pointed out that in nonhomogeneous materials the external loading conditions in
many cases may be modelled by prescribing displacements rather than tractions. The two
practical cases that ma\v be considered are the “uniform strain™ and “bending” applied to the
medinn away fromi the crack region. It will be assumed that the displacements are prescribed

in the planes parallel to the direction of the property gradient, x; in such a way that

»51}11\1.:?C) = ¢t¢c -

1N (45a.b;

By obs<erving that u=pgexpiéx;) and x;=xcosf+ysinf. in the perturbation problem the crack

surface tractions corresponding to {43) may be expressed as

oyy(x.0} = - ;ﬁi coeéxcosgcos20 \
cxy! X0 = 1::“9; (oeé'\‘-cosesin(icosﬁ : (46a.b)
oyy(x.0) = - f_‘:i clxe“xcosgcos% .
Ixy(x.0) = %ﬁ ¢, xe8%<0805in0c052¢ | (47a,b)

where. depending on the constraint of the medium in z direction,

Eo . for plane stress.
Buo _ { (48)

Eo/¢ 1-u2) . for plane strain .

If the solid is uniformly stressed in x; direction (by prescribing u, or
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vy, (FX¥1=00). the corresponding crack surface tractions may be shown to be

oyy(x.0) = -aosinzu . cxy' X.0) = -ogsinfcosh . {49)

whick. for a giveu crack orientation 6. are constant. Thus. the solution for the loading
conditions (49 may be obtained by a proper superposition of the results found by using (43
and (441,

Table 1 shows the effect of aé on the stress intensity factors for the two limiting crack
orientations. #=0 and #=7/2 under a uniform crack surface pressure 0. For =0 the crack
results obtained are esseutially the same as that found by Delale and Erdogan (1983). For
f==/2. x=0 is a plane of symmetry. the crack problem is one of mixed mode. and the mode II
component becomes quite sigunificant for larger values of aé. For the uniformiy pressurized
crack more detailed resuli- are shown in Table 2 where the angle § is varied between 0 and
w/2. The results need tu be examined rather carefully if one is interested in the fracture
initiation at the crack tip~. For example, one surprising result shown by Table 2 is that the
maximuu values of k; and k; do not generally correspond to the limiting crack orientations
6=0 and §==/2. This may be seen somewhat more clearly from Fig. 2 which shows the
variation of the stress intensity factors with the angle 6 for aé=1. Also, the values of 4
corresponding to maximuni stress intensity factors seem to depend on aé.

For a quick assessment of a possible crack growth initiation, it is generally sufficient to
examine the amplitude and the direction of the maximum cleavage stress PP at the crack tips
see Erdogan and Sih. 1965;. Given the stress intensity factors k;, ard k,, the “cleavage”
stress ¢ __ in the small neiglihorhood of the crack tip may be expressed as

(o] ~]

- % k,sindjcos 3 . (50)

1 .
g, rt.ec = == k.(*(;-z
Co . 21 T

(I Ku}
1016

o
t

where (r,0) are the polar coordinates at the crack tip and ¢ is measured from the x axis.
Generally the hypothesis is that the crack initiation would be radial in a direction ¢*

perpendicular to the local maximum cleavage stress 7 5 pmax obtained from

: o .
c';_o 0 o0lr0) = - % %’Tr cos (k;sino® + k,(3cos¢*-1)] =0,
e (r.0o"1>0 (51a.b)
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and at a value of the load level determined by

*

ko sino®)cos % =

[ T4
'{_’7‘

=, _ 2 O' -
croo(r.o ) = T‘.’Lr (kcos T . (32)

P

Qxr

where KIC is the (local) critical stress intensity factor of the medium. In studying the fracture
initiation from an existing flaw in brittle and quasi-brittle nonhomogeneous materials, two
additional points need to be made. The first concerns the angular distribution of the
asymptotic stress state for small values of r. It appears that these expressions (such as (50))
for a nonhomogeneous medium are identical to that of a homogeneous medium provided near
and at the crack tip the elastic properties of the medium are continuous (but not necessarily
differentiable) functions of the space coordinates (see Delale and Erdogan, 1988a). The second
point is that. even though the material is assumed to be isotropic with respect to its fracture
resistance. the resistance parameter KIC is expected to be a function of the space variables.
K- may be determined from standard fracture toughness experiments by using a series of
homogeneous specimens covering the complete range of material composition for the
nonhomogeneous medium under consideration.

For a fixed value of aé=1 Table 3 shows the effect of loading conditions and the crack
orientation on the normalized stress intensity factors. It may be observed that under certain
individual loading conditions the mode I stress intensity factor k; could be negative, implying
crack closure. Such solutions are. of course. not valid and can only be useful in a superposition
that gives a positive resultant k.

In the solution given effect of the variation of the Poisson’s ratio v is assumed to be
negligible. Analytically. it is difficult to verify this assumption. However, one can solve the
problem for various different values of v and compare the results. This is shown in Tables 4
and 5. Table 4 shows the effect of v on the stress intensity factors for a§=0.25, 6=x/2, and
for uniform crack surface tractions -¢, and -ro. The maximum difference observed was 2% in
Rl under uniform crack surface pressure ¢,. The difference for other loading conditions (which
are not all shown in the table) was somewhat smaller. For #=0 similar results were found by
Delale and Erdogan. 1983. The effect of v is, however, more significant for greater values of
aé. For example, the same calculations as Table 4 were repeated for a§=2.5 and the results
are shown in Table 5. It may be seen that the difference in k, obtained from 0.05<r<0.45
may be as high as 15%. On the other hand, within a more practical range of v, namely for
0.2<v<0.35. the difference is less than 6%.

Some additional results for displacement loading given by (45) are shown in Tables 6

and 7. The tables show the effect of the nonhomogeneity parameter aé and the crack

A




orientation 6 on the normalized stress intensity factors.

After solving the integral equations and observing that

J' Tnis)ds

=.3U (r)N1-r? (33
= 1t : (93)
-1 11-52 moro-l _

the relative crack surface opening may easily be obtained from (22), (32). and (34) as follows:

X 3 X
u(x.+0)-u(x.-0) = J_a g, (t)dt = - va%.x? % %1 Anl i(x/a),

X
VX 0)-vix.-00 = J g, t)dt
-a

$ BaU,  (x/a) . (54a.b)

I
-
[y

N
v
N
—t9%

Figures 3 and 4 show the crack opening in y direction for §=0.5 and 2.3, respectively. where

the loading is crack surface pressure ¢, and the normalized displacements given in the figures

are defined by
o= % [V(x0)-v(x.-0), . vo = 00 l—iﬁ . (53)

The three displacements shown in each figure correspond to #=0 and #=r/2 with §#0. and to
a homogeneous material (é=0). It may be seen that for large values of § the crack opening
displacements in nonhomogeneous materials can be significantly greater than the corresponding

homogeneous values.
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APPENDIX

Expressions of the functions Ku(y,a). (ig=1,2)

. ' sy {3-xjam—i(l+~in, , R n,y
Kyyivaar=e"" { Tarn g [(1+K)f35-ia(3-K)f5,]e

N (3-% )omz-*—i(l~'-x)n;
40(\'\"1)*0

Cilen)fsy +io(3-x)f21]en2y} )

Ay {d-Kiam,=~il{l=Kx)n
A { N1 1 A)—l(l+,{](f
40-#-‘-1:-0 ’

n,v
12-iafgp)e !

1\13~ v = e

{3-krams=ii l—n~ My

n,y
~n)(fyy-i 27y
daih-1jag (1=x)ifyy-iafy; e }

- Ay , a=inym, . . nyy
Kyjiviai=e { _4.(# g 1_,{){32_10(3-,\.){22}(9 1

_atin,m, . . n,y

-~ '—4(}—;—0—— 3 l‘h)fsl*lO(S‘A)lele } .

v o=lugm n,v

\ ) —e " 11 - M H - 1Y
Nazivur = e 7 { —===t (1=n)(fypiafyp)e

a=ingm, . npy

" TTaeg t1+n)(f;;-tafy,)e } .

-¢ = Imp-mp)ms-mgnyny+nzng) + (my-my)(my-m3)(npnz+ngng)

- (my-m3)(m,-my)(n;n3+nyng)

where 7. m,, n, and fJk are given by (2), (11), (13), and (24). respectively.
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Table 1. The effect of the nonhomogeneitv constant a’ on_the stress
intensity factors; .=0.3, p.(x)=-:_, p,(x)=0, k,(+a) =
= - 1 o 2 i
ki(+a)/70va .

- = -/2 (El(-a) = El(a), Ez(-a) = -Ez(a))

a: C0.1 0.25 0.5 1.0 2.5 5.0

_ i

k(@) 1.00¢ 1.036 1.101 1.258 1.808 2.869

E:(a) ; 0.026 0.0653 0.129 0.263 0.697 1.567
- =0 (iz(a) = 0, Ez(-a) = 0)

El<aw 1,023 1.053 1.103 1.189 1.382

El<-a)  0.975 0.936 0.871 0.757 0.536

-18-




£97°0= t72°0- 181°0- 8E€IL°0- 660°0- S90°0- 6t0°0- 120°0- 010°0- %00°0- 000°0 Amlku
£9z°0 8670 Lee"o 97¢°0 ARl 6£€°0 90t "0 16¢°0 6L1°0 £60°0 000°0 Amku 0°1
8621 70Z°T  6L1’l  TL0°1 00"l 8€6°0 8.8°0 L78°0 88L°0 S9L°0  (SL°0 Amuvﬁu
86Z° 1 voE" 1 9Le° T TGl gverl Lzecl VL TAN! 96¢°1 [XAAR g861°1 681°1 Amvﬁw
61°0- S1L°0- 660°0- 28O0~ %90°0- 8%0°0- 7¢0°0~ 0 0- t10°0- 900°0- 000°0 Awlku
67170 ovtto 87170 16170 69170 19170 9Z1°0 ¢01°0 LL0°0 8¢0°0 000°0 Amvwm S0
to1-1 LLo°1 0s0°1 1zost 066°0 096°0 1£6°0 906°0 (88°0 G(8°0 18°0 Awlvaw
tor-1 0zl SELl A A I it 129 B telci tirtl 901°1 t01°1 A«V—u
$90°0- (090°0- %40 0~ (w0°0- 6L0°0- 1e0°0~ 200~ L o- 110 0- S00°0- 000°0 Amlku
$90°0 890°0 04070 69070 £90°0 19070 v$0°0 £v0°0 0t0°o 910°0 000°0 Amku <70
9t0° 1 9¢0°1 VALV 100°1 L8670 %(6°0 <96°0 15670 £v6°0 BL6"0 9¢6°0 Amlv_m
980" 1 VO £60° 1 860" 190" 1 190°1 190°1 660°1 (50°1 660" 1 SG0°1 ; Acv~u
Z9C0°0= S20°0- Ll070= 140°0= RI0OT0- ¥410°0=- 21070~ Z600°0- 1900°0=- 1¢00°0~ 00070 Aclvmu
{900 L2070 L0t Y070 va0To L1070 YE10°0 910"y 0to°o0 ¢s00°0 000°0 A:vmu
1°0
S800° | SOUTL L000° YooY 16670 LB6"U £8OT0 086°0 1L6°0 9(60 SL6°0 Amlv_m
Y8001 2101 1ot giotE uc0td 170" ety XAV L0l £20°1 Lo A:VAu
$°0 VALY Vo0 L0 t0 4270 <o $1°0 10 S0°0 0 /o tye
[T . . e e e e 8 oo oo e e SRR U S
v ! ! 4 o l " .
oo/ (U)o = (R4)7 0 = (X)7d o= = (x)Td fgrg = o isd030By Adfsullul
SSEIA)S OY) U0 4 UoPIRIUa a0 Yol o) put (ye) Juilisuoy Allouadowoyuou 3yly Jo I03jJJd YL g ol4el

~19~




66670 Y4670 BUGTO  §98°0  6TB°0  IUBTO  I8/°U  69L°0 TYL'0 85L°0  LSL°0 Amnvuu
66670  HLOL 690"l w60°T  9IT Tt 9ti*1  w¢1°1  691°1  6Z1°T (BI°T 68I°1 Amvmu
60270  11Z°0  (0CZ°0 86170 ¥81°C 99170  1I%1°0 TIT°0 9.0°0 8€0°0 000°0 Amav~u
60770~ 861°0- 8L1°0- 6%1°0- SLL°0- TBO'0- €S0°0~ 0€0°0- ZI0°0- €00°0- 000°0 Aavﬁu

°~.| = AXVNQ Ac = Auav.ﬂﬂ
1070 Z10°0 110°0 010°0 80070 900°0 %00°0 ¢00°0 100°0 <S000°0 0 AmlvNH
¢t0t0 010"0  800°0 900°0 £00°0 10070 100°0- €00°0- 200°0- T100'0- 0 AmvNu

$6L°0~ L6870~ 96L°0~ v6L 0~ 16£°0- 98L 0~ T8L°0- 9L£°0- TLL'0~ OLE°0- 69€°0- Amuvﬁu
S6L°0  7oLT0 [BETO0 7BLT0 YLET0  TLLTO 89670 99€°0 %9€°0  Y9€°0 €9€°0 Amvdu

0 = Axvma .Nc\*xmcl = Axvﬂa

BYOT0~  65070= YOO~ LLOT0- £Z070- 610°0- Z10°0- 900°0- €00°0- 100°0- 000°0 | (v-)“y
890°0  [L0°0  ¥80°0 8800 060°0  [80°0 8L0°0 ¥90°0 9%0°0 4%Z0°0 000°0 Acvmu
$9670  TSSTO L8570 12570 SOSC0 88Y°0 €L%0 6S%°0  6%vT0  £Y%C0  1%%°0 Acuvdm
$9S°0  SLSTO0 TBSTO GBSO WBSTO 6LST0 14S°0 9570 £SST0  L%S°0  S%G*O (v) ™y

0 = Ava»_ ¢y .xN,._l = Axvf_

1200 ¢20"0 12070 610°0  S10°0  110°0  L0U°0 %000 CO0°0 (0Q0°0  000°0 Az-vmu
1¢0°0 61070  S10°U  0I0°0  S00°0 %000°0- %OO°0- 900°0- 900°0- ZLOO 0- 000°0 Amvmm
09670~ L9$70= %70~ 8LLT0= 0LST0= 12$°0- 116°0- 10S°0- t6Y°0- 6L%Y 0~ 98%°0- A=|Vﬁu

o%s 0 7L6°0 5¢6°0 716°0 L0470 VIV (8Y°U t87°0  08%°0 6(%°0 6L%°0 (®) "y
e e el i e e Ll il 4
0 = Awia ‘e/x Loo . Axv_ﬁ_
S0 $%°0 YAV 100 £°0 YAV <0 STy 1°0 s0'0 0 Af Ay

{ I
. WxA._..:v\A:vax = Achuu ‘O°1 = yu

{0 = PSA0T0U ] ATISUA UL SS04I5 O U0 SU0 ] PUuod duipro] oyl pue ¢ Jo 10933 Yy, 't a[yel

=20=




0 Iy1°0- %%Z°0- €0€°0- 1ZL°0- SOL°0- %9Z°0- 80Z°0- €%1°0- TL0°0- 0 Am-vNu
0 991°0- 9L€°0- G8Y°0- T6S°0- IT¥9°0- 6Z9°0- 1%5°0- 86£°0- 0TZ°0- 0 AmvNu
0 600°0- G£0°0 €OT°0 T8I0 8ST°0 GZL°0 LLE°0 €I¥'0 GE%°0 T%°0 Amnvﬁu
0 690°0 6610 TOY"0 £99°0 $96°0 6LZ°T ZLS°T 018"V 996°T 120°C ANVﬁu

o

1
u% e = ept s o @ty A4

6L£°0~ 8LL70— LLE°0- YLE°0~ HLLT0- <CLE°0- 0LE£°0— 69€°0- 69€£°0- 69£°0- 69¢°0- Amlvmm
64070  6LL70  BLL'0  9LEL°0 ®LE€T0  TLLTO OLL°0  89€°0  G9€°0  %9€°0  £9€°0 Amvuw

S00°0~ 600°0~ 110°0- ¢€10°0- GI10°0- ST0°0- %10°0- ZI10°0- 600°0- %00°0- 0 (e-) ™y
S00°0- Z00°0- 100°0  €00°0  %00°0 €00°0  €00°0 TOO'0 100°0 100°0 0 Amvﬁu
rm\,xr_l = Ava; ‘0 = Axvﬁa
S S — >

00S°0  68Y°0 8LY°0  8YY°0  6L%°0  TSYTO  LYYTO0  vv%t0 TwYTO0 1wy 0 Tyvc0 | (e-)")

00$°0  60S°0 9160 2240  £¢S°0  1EG°0  9€S°0 O%STO  TYSTU  wWST0  SwS°0 Amvwm

$60°0  960°0  SL0°0 LS00 0070  4H0T0  6L0T0  1£0°0 1ZOTO  [10°0 00070 | (=)
)

$G070- 7S0°0— 8%0°0- 1%0°0- 76070~ %2070 [L10°0- O10°0- 600°0- Z00°0- 000°0 (e ﬁw
n\axm_l = Ava; ‘0 = Axv_;
L0700~ 90S°0- %0ST0- 00470— 967 0- ¢o% 0~ 68v°0- [8%°0- 98%°0- 98%°0— 98%°0- Awlvmu

L0s°0 L0670 <040 060 66%"0 90%°0 16Y°0 98%° 0 Z8%°0 08%°0 6.(%°0 Acvw

b
600°0- 910°0= 1Z0°0- STU0~ 8IU0- 620°0- [c0°0  £Z0°0- 910°0- 800°0- 000°0 Aanvdu
600°0- ¢00°0= t00°0  LOU°0 8000 8OO0 9000  %00°0  200°0 100°0 000°0 Amvdu

J e e L e U |-
S°0 Y0 70 SL°0 €70 S7°0 0 s’ 1°0 50°0 0 A

panurjuod - ¢ Iqel

-21-




— [ S

0 110°0 7¢0°0 6$0°0 8L0°0 (80°0 S8O°0O LL0°0 Ls0°0 870°0 0 A&lvmu
0 710°0= 190°0= 6L1°0- 9YLZ 0~ 8§ 0~ SBL 00— €£8L°0~ 01€°0- ¢L1°0- 0 Acvwm
0 ¢00°0= 110°0= 18L0°0= 640°0= 060°0= 0Z1°0- 9%1°0- 99[°0- 6L1°0- €81 0- Am|v~m
0 £00°0 £20°0 6L0°0 l6t°0 49§80 FA Y 0%8°0 890°1 62C"1 (82" 1 Acv_m
e e e T L L
el Cazenty = ety L ety AR
¢ 0 <%0 v 4400 €50

$Z2°0 Z°0 $1°0 1°0 $0°0 0 W/

ponulluocy - ¢ a(quy

=22




Table 4. The effect of . on the stress intensitv factors; ai=0.25, -=-/2,
§i(1> = k.(:a)/(:o.' )va
0.053 0.1 0.13 0.2 0.2> 0.3 0.35 0.6 0.%5
Pyx) = =T L zatx) = 0, (Rj(=a) = El(a), E2<-a> = -k,(a))
El(a) 1.026 1.02% 1.030 1.032 1.03- 1.036 1.039 1.042 1.04%
i,(a) N.06° 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.0653
PLGx) = 0, pa(xd = = (El(-a) = -El(a), Ez(-a) = Ez(a))
Kl(a\ '~0.063 =0.063 =0.0¢3 -0.063 =0.062 -0.062 =0.062 =0.062 -0.062
Ta(a) 0.99> 0.99:° 0.996 0.996 0.997 0.998 0.999 1.000 1.001
Tahle > The elfect of and the leadinz conditions on the stress intensity
factcrs; a = 2.2, = é, Ei(;a) = ki(;a)/(ij,fj)vg .
0.05 0.1 C..>5 0.2 0.23 0.3 0.35 0.4 0.45
pl(x) = - 02(\) = 0, (El(—a) = il(a), Ez(-a) = Ez(a))
El<a) 1.67-  1.696 1.720 1,747 1,776 1.808 1.843 1.882 1,927
Eﬂ(a) 0.635 0.68° G.689 0.691 0.694 0.697 0.700 0.703 0.705
Totx) o= —‘lea, pz(x) = 0, (El(—a)=-§1(a), EZ(-a)=§2(a)
Kl(a> 0.€533 0.h33 0.6=3 0.649 0.656 0.663 0.671 0,680 0.690
ﬁ,(a) 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.090 6.091
pl(x) = ~:2x?/a;, pz(x) = 0, (El(-a)=§l(a), Ez(-a)=-§2(a))
il(a) ; 0.66S 0.674 0.680 0.687 0.69% 0.703 0.712 0.722 0.733
iq(a) 0,174 0.174 0.175 0.175 0.176 0.176 0.177 0.177 0.178
| pl(x) = 0, pz(x) = =7, (kl(-a)=-kl(a), kz(-a)=k2(-a))
|
kl(a) i=0.405 =0.4046 =0.402 =~0.400 -0.399 =-0.397 -0.395 -0.392 -0.390
ky(a) | 0,989 0.996 1.003 1.011 1.019 1.028 1.038 1.048 1.060
P (x) = 0, py(x) = -7 x/a, (kj(-a)=k,(a), k,(-a)=-k,(a))
El(a) ;-0.020 -0.020 =-0.020 =-0,020 -0.021 -0.021 -0.021 =0.022 -0.022
k.(a) + 0.527 0.528 0.529 0.531 0.532 0.533 0.535 0.537 0.539
P () = 0, py(x) = =-yx~/a%, (kK (-a)==k (a), k,(-a)=k,(a))
il(a) -0.106 -~0.105 =-0.105 =-0,104 =-0.104 =-0.103 -0.103 -0.102 -0.102
iq(a) i 0.499 0.501 0.503 0.505 0.508 0.510 0.513 0.516 0.519
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Table 6. Normalized stress intensityv factors for "uniforr strain"
S (xl,;«)=£o awayv from the crack region; ' =0.3,

K =E : va .
o] o 0

‘a - kl(a)/xo kl(-a)/Ko kz(a)/l(o kz(-a)/Ko
L0 ¢ 1.19 0.825 0 0
S0l ! 1.081 0.750 -0.321 -0.254
0.2 - 0.781 0.548 -0.514 -0.422
0.25 0.3 | 0.414 0.290 -0.504 -0.437
0.4 - 0.12: 0.075 -0.304 -0.282
0.5 0 0 0 0
0 1.424 0.674 0 0
0.1 1.285 0.617 -0.344 -0.213
0.2 0.925 0.460 -0.548 -0.365
0.5 4.3 0.490 0.247 -0.532 -0.397
0.4  0.146 0.059 -0.314 -0.269
0.5 0 0 0 0
0 6.317 0.115 0 0
0.1 .  5.376 0.117 -0.867 -0.037
0.2 3.315 0.115 ~1.155 -0.090
2.3 0.3 1.441 0.082 -0.900 -0.158
0.5 . 0,369 0.004 -0.429 -0.179
0.5 | 0 0 0 0
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Table 7. Normalized stress intensitv factors for "bending" awav from

the crack region; .=0.3, 5ylyl(xl,;“) = 1%, K = ElEo“; .
‘ .
la i s/ : kl(a)/K1 kl(-a)/Kl kz(a)/!\'l kz(—a)/Kl
0 0.637 -0.391 0 0
0.1 0,542 -0.340 -0.174 0.111
0.2 0.3.- -0.217 -0.232 0.158
0.23 0.3 0.11¢ -0.088 -0.160 0.121
0.4 0.01¢ -0.014 -0.049 0.042
0.5 0 0 0 0
0 0.80¢ -0.304 0 0
© 0.1 0,983 -0.268 -0.214 0.087
0., 0.2 - 0,397 -0.178 -0.278 0.128
0.3 0.139 -0.076 -0.184 0.105
0.4 0.018 -0.013 -0.053 0.039
0.5 0 ' 0 0 0
o0 6,982 -0.039 J 0
C0.1 3,929 -0.039 -0.898 0.012
. 0.2 1.880 -0.037 -0.968 0.024
3 0.3 - 0,486 -0.028 -0.480 0.033
0.8 £.043 -0.009 -0.094 0.023
0.5 0 0 0 0
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2K geome:zry in the nonhomogeneous mecium




<1
1.0 1.1 1.2 1.3 1.4

0.7

Fig. 2 Variation of the normalized stress intensity factors with the
crack orientation in a nonhomogeneous medium containing a uni-
formly pressurized crack, al=l,
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Fig., 3 Normalized relative crack opening in y direction for aé=0.$5,
*=0 and *=-/2 and for a homogeneous medium (&=0) (see Eq. 55).
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-1.0 -0.5 0.0 0.5 1.0

Fig. 4 Normalized relative crack opening in y direction for aé=2.5,
=0 and 2=7/2 and for a homogeneous medium (é=0) (see Eq. 55).
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